
Explorer Post 369

E x p N e w s
V O L U M E 4 , N U M B E R 6 , J u n e 1 9 9 7

The Explorer Code

As an Explorer-
������� ���
	��� ��������������� ������� ����� �
�
��!"� �#� � ����� �$�%�&�
� � '(�)�*� �,+.-"/0���%/0� �1� ������-2'(����!"�%���%/0�)� �3�
��!"� �1-54
�����567��-26(� �
�(8$� ��� 9:� �����
�&4 -"�
�
9;���<4 ��� � �%4 '(�.� �=�1>?�3��� � !@� -2'(�
/*'(� � �&�A����/18$� � �@����� �%� ��� �=�.6(�&�3�)-2�%�����)�
���)�B-"4
��-���-5��� �B�C>D-28�$� ��4 �&E
��8$� � �@� �
����� '(�3�F�1>��������� �2���B������� � ��!"�G���%/�8$� � �
/H-0��� �5���2���I� -(6(�
�&�J�&� 	%�;���%/,�3�%��� �K�I� �LE
��8I��� �M�
���2-5!N�%� OP�:� �%�:/H� !N�%��� >����%/Q8$-5��� �R-"4@�C>
4L��� ��-�8B���
�D���%/;8$� � �J'(�)��4L��� �*6(� ��>1���%/!@-"-5/*8$� � �
� �$/H����� � �%!78I��� �I� ���
��E
�&8$� � �"����SN'(� �
�T� �%�T��UJ6(��-5��� ��!0��� � ��� '(/H�;� �������)���&V"�
� ���1� � '(� �W� �X������� ��� �%!@����%/R��/*	��
��� '(�3�1-��W� ���
4L�
-���� � �&�3�%-"4�-�'(���K�%����!"� ��!78I-"��� /HE

Calendar of Events:

July 25 ExpNews Deadline
July 28-Aug5 1997 BSA Jamboree
August 22-24 Campout
August 22 ExpNews Deadline
September 12-14 Canoeing Campout
September 26 ExpNews Deadline
October 24 ExpNews Deadline
October 24-26 Campout
November 28 ExpNews Deadline
December 12 ExpNews Deadline
December 30 Leave for Australia
January 2-10, 1998Australian Jamboree

Don’t Trust Your Fir ewall
Daniel J. Gregor Jr.

Here is some food for thought: Most
computer security professionals agree
that about 20% of computer security
incidents are caused by someone outside
the organization, with the remaining
80% being caused by someone inside the
organization. Does your budget for com-
puter security take into account these
percentages? Do you spend one-fifth of
this budget on firewalls and remote
access security, and the rest on security
within the company?

What DESCHALL Means
C. Matt Curtain http://
www.research.megasoft.com/deschall/
what.html

With all of the press that DESCHALL
has gotten, lots of people are asking
“what does this mean?” What follows is
an explanation, written for the nontech-
nical reader. This is important for all of
us, because regardless of whether you
like it, information about you is pro-
tected with DES.

What’ s a cryptosystem?

Cryptosystems are locks for data. By
using mathematical functions (called
algorithms), the data is turned into gib-
berish that can only be returned to a form
that makes sense by applying the appro-
priate key. It’s easy to understand how
this works by envisioning a bicycle tum-
bler lock. In a bicycle lock, there are a
number of tumblers, each with numbers
on it, from 0 to 9. Because computers are
binary -- only working with 0s and 1s --
at their most basic level, a cryptosystem
is like a bicycle lock that has only two
numbers: 0 and 1.

On such a lock, there are two possible
choices: 0 and 1. By putting another tum-
bler with 0 and 1 on it, the number of
possible combinations increases expo-
nentially from 2 to 4. (In computers, we

use “bits” instead of tumblers, but for our
purposes here, it means the same thing.)

Possible Combinations for Small Binary
Locks

TABLE 1.

Number
of
Tumbler
s

Number of
Possible
Combinati
ons

Possible
Combinations

1 2 0, 1

2 4 00, 01, 10, 11

3 8 000, 001,
010, 011, 100,
101, 110, 111

DES Code Broken!

ExpNews

So, not only does the lock have to be
strong -- that is, function as it was
designed, without allowing a “shortcut”
to solve the problem (such as the applica-
tion of boltcutters) -- it has to have
enough possible combinations to make
someone trying every single one infeasi-
ble.

A cryptosystem with only a 3-bit key-
space would have 8 possible keys, as
shown in the chart above, or as we see
mathematically: 23 = 8. This would not
be very secure, since to decrypt the mes-
sage, I would try to decrypt it using the
key 000, then 001, then 010, etc., up until
111, until I am looking at the contents of
that message.

Let’s catch up with our chart, by moving
ahead to as many tumblers as what some
cryptosystems are using today:

Possible Combinations for Larger
Binary Locks

For a cryptosystem to be secure, there
have to be enough possible keys to make
it practically impossible for someone to
(on a regular basis) try every possible
key until they find the right one that
works.

DES is a 56-bit cryptosystem, first pro-
nounced a standard in 1977. At that time,
it was infeasible for someone to try each
of more than 72 quadrillion possibilities
and find the contents of the encrypted

TABLE 2.

Number
of
Tumbler
s

Number of Possible
Combinations

40 1,099,511,627,776

56 72,057,594,037,927,936

64 18,446,744,073,709,551,616

128 340,282,366,920,938,463,46
3,374,607,431,768,211,456

file. At that time, it was safe. We’ve
proven that this is no longer the case.

What We Did

We took a message that had been
encrypted with DES, and read the con-
tents of the message, as well as figured
out which key was used to encrypt the
message in the first place. At the same
time, we now have more data that shows
the kind of horsepower we can assemble
by having a bunch of people run a little
piece of software (called a client) on
their computer that has no noticeable
effect on their systems’ performance.

It is noteworthy that this is the first time
that a message encrypted with DES has
been broken “in public.” It’s been widely
believed that large governments’ intelli-
gence agencies (such as the NSA in the
US) have been able to do this for quite a
few years now.

That client took the encrypted message,
and decrypted it using every possible
key, until we found the one that resulted
in some output that made sense.

We were trying about 7 billion keys per
second at the time that the solution was
found. If that computing power -- assem-
bled using a bunch of PCs, Macs, work-
stations, and some servers -- was applied
to the same cryptosystem of different
key sizes, we can see how long it would
take to decrypt a message by trying every
possible key until the right one is found.
This is the computer equivalent of turn-
ing the tumblers of a bicycle lock to

0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000

and pulling the chain to see if it unlocks.
If not, we turn it to

0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000001

and try again. We do this until we find
the right combination.

Which means that we tried
37,350,551,110,358,107 of
72,057,594,037,927,936 possible
keys.

(Mathematicians, please forgive the
following oversimplification. We can
compensate for the extra work needed
to compute RC5 by adding more com-
puters to the project, so this compari-
son is possible.) Time to Crack
Messages Encrypted with Various Key
sizes

(On the average, at DESCHALL’s
final speed.)

For comparison, Hawking[1] notes
that the age of the universe is probably
“only” 20,000,000,000 (or perhaps
10,000,000,000) years old.

So, while it’s infeasible for
DESCHALL to crack a 72 bit key, it
seems that 64 might be within reach,
by adding more machines. (We proba-
bly used between 15,000 and 20,000
machines.) Consider that the RC5-32/
12/5 (40 bits) key crack took three and
a half hours. The distributed computer
we put together could do it in about 78
seconds.

TABLE 3.

Number
of
Tumbler
s

Time to Crack the
message

40 78 seconds

48 5 hours

56 59 days

64 41 years

72 10,696 years

80 2,738,199 years

88 700,978,948 years

96 179,450,610,898 years

112 11,760,475,235,863,837
years

128 770,734,505,057,572,442,
069 years

ExpNews

The RC5-32/12/6 (48 bits) key
crack took 13 days. A DESCHALL-
sized effort could do it in 5 hours.

Given Moore’s Law, which states
that computing power will double
every 18 months, and the fact that
the brute-force searches done for
RC5 and DES so far are written in
software on general-purpose com-
puters (a extremely slow method, by
comparison to custom hardware),
one can see how it’s useful to get
keys up over that 80 bits mark, espe-
cially if it’ s protecting data that has
to be secret for any length of time.
(US Census data, by law, must
remain secret for 72 years[2].)

Imagine not only trying to figure out
how much money it would take to
build a machine to search a 96-bit
keyspace today, but also in 99 years
from now. Predicting what we’ll be
using next year is often tricky
enough, much less 10 years, 40
years, or 100 years down the road.
(See why we’re paranoid?)

What’ s the Solution? (How Do
We Address this Problem?)

It doesn’t “cost” us much more, in
terms of computer cycles to encrypt
something with 128 bits, instead of
40 or 56. Yet, the level of security
that we enjoy as a result of that extra
step is amazing. We go from being
able to trivially decrypt a message in
seconds to requiring more time than
the age of the universe many times
over.

The solution, then, is a simple mat-
ter of replacing our DES “locks”
with locks (cryptosystems) that use
larger keys. Many such systems
exist: Triple-DES, IDEA, Blowfish,
and RC5, to name just a handful of
the more well-known options. Data
encrypted with DES must be re-
encrypted using the new cryptosys-
tems, and applications must be
reprogrammed to stop using DES
and begin using the new system for
their encryption.

To be “safe,” then, the data that’s been
encrypted should be worthless by the
time someone is able to read it by using
brute force. As an example, a credit card
that will expire in a year or two from now
might be OK to encrypt with a 64-bit
cryptosystem. (Anyone who can raise
enough money to build a machine that
will crack 64-bit-encrypted messages
would be able to find other means -- like
bribing clerks -- to get the data he wants,
so we’ll only look at software-based
attacks like DESCHALL.) However, it
would be stupid to encrypt census data
with a 64-bit algorithm, since
DESCHALL could find the key in about
41 years (on the average). Factor in
Moore’s Law, and you’re looking at
something that can probably be read in a
decade with little-to-no effort.

It’s undesirable to change standards con-
stantly, and be in a perpetual process of
upgrading the cryptographic modules of
our software. It’s also unnecessary. Sim-
ply erring in favor of the paranoid and
building systems NOW with keys that
seem ridiculously long, and re-encrypt-
ing our small-key-encrypted data with
these systems will adequately address
the problem.

...at least until someone gets a quantum
or DNA computer working. Then, all
bets are off.:-)

References

1 S.W. Hawking, A Brief History of
Time. p.108. Published in 1988, by Ban-
tam.

2 U.S. Census Bureau. http://www.cen-
sus.gov/genealogy/www/

Quote of the Month
Did you ever notice you are working
harder than ever before so your
employer can make a bigger income?

Web Stats

http://post369.columbus.oh.us

When we installed “Access Watch” we
reset the counters. Therefore, the sta-
tistics will not show much growth
from the April issue of The ExpNews

Nobanner
D.J. Gregor

I just looked at how to setup the
Solaris LP system so that a banner
isn’t printed. Just do the following:

Edit /etc/lp/interfaces/Y2Z�[
\�]%^�_)[`;]�a�b�_�c

Find the linenobanner=”no” , and
change the “no” to “yes”. This will set
the default to not print a banner.

If you want to REVERSE the ‘-o
nobanner’ option to lp(1) so that it
prints a banner, go down a few lines in
the specified file and change “yes” to
“no” in this section of code:

case “${inlist}${i}” in
nobanner)

nobanner=”yes”
#<Change “yes” to “no”>
;;

TABLE 4.

Pages Users Button

174 39 exploring

1025 239 ExpNews

890 94 links

3386 408 post

52 24 1997.calendar

1436 129 members

515 46 Adults

221 50 Toadies

318 46 Youth

369 55 program

20 12 project

204 47 scouting

Explorer Post 369
P.O. Box 307218

Gahanna, Ohio 43230
United States of America

Our E-Mail Addr esses

Committee Member
Herb Docken Institutional Representative

Ralph Maurer(E) Committee Chairman

Tom Niedzielski(E) Committee Member
Steve Weller(E) Committee Member

Adults Members:
James D. Corder(E) www.corder .com
Andy Drake drake.73@osu.edu
Steve Potter spp@psisa.com

Consultants:
David J. Alden

Honorary Members:
Mark Bastian(Q) mpb@icenet.com.au
Dan Jackson
Lucas James(Q) jj@ldjpc.apana.org.au
Alan Jones(Q) alan@scoutnet.net.au
Sara Jones(Q) sacubs@dove.net.au

Youth Members:
DJ Gregor(E) dgregor@gregor.com
Joe Harvey(E) joharve4@mail.vt.edu
John Klapp(E) klapp.2@osu.edu
Karl N. Matthias(E) matthias.3@osu.edu
Jim Smith smith.2407@osu.edu
Mike Turner turner.319@osu.edu

Post-Toadies:
Chris Gauger(1st) Toady
Matt Groce(1st) Toady
Allan Hamilton(S) Page

(E) Eagle Scout
(Q) Queen Scout

d�e�f@g�h fKi�jFh k�lme2h j5n0fLi�jmo�fLlml fLp�qJp fNj�l p�h rLl s t;lme�u�j)f@u v
wMxmy s u�p fLpJz�u�j�l�{5|L}.q)k2~�l e�f t;~�uMk2u3l5kNfLrLf j j)qJp�h s t7p f y p f jJfKk2l j
l e�f5g�h fLi�jHu�p�u y h kNh u�k�jHu v7l e�f��(f v�u�pK�HqJl h u�k"o��2l e�fLpKk��*e��Np rLe
u�p�lme�f@�Pu�tM�@rLu��Nl jFu v��7�MfLp�h rLq�qJkN~L��u�p�l e�fN�"h �Hu�k���fKk2l u�k
��u��2kNrLh s �

Our Principals:
1) Honor before all else.
2) The difference between a

winner and a looser is that
the winner tried one more
time.

3) K.I.S.M.I.F.

Our Cr eed:�I�5�.�K�P�2���3�D���$�����������K�5���B���I���*� �0�P���
�I�F *�������*�� *�*¡

Explorer Post 369:

Explorer Post 369 was chartered
on December 31, 1994 to the Ref-
ormation Luthern Church.

Explorer Post 369 specializes in
UNIX for Programmers while
emphasizing a deep theme of
Engineering Computer Informa-
tion & Science

Membership in Explorer Post 369
is open to young men and women
between the ages of 14 [and in
high school] and not yet 20.
Annual Membership fees are
$15.00.

Our Web Page:
http://post369.columbus.oh.us

The file /etc/lp/interfaces/
Y2Z�[
\�]%^�_)[`;]�a�b�_�c is created whenever
you make a printer, and it is derived
from:

/usr/lib/lp/model/standard.

Up-an-Coming Post Expenses
12/01/97 Post Charter $30.00
12/01/97 Post Insurance $85.00
Monthly ExpNews $75.00

Up-an-Coming Member
Expenses
Registration 11/01/97 $15.00

Post Finances
Explorer Post 369 has -$943.00

Floor Fund Need $1,200.00
Floor Fund In Hand $820.00
Pledges Outstanding FF, $200.00

Room Fund Needed $3,800.00
Room Fund $0.00

Computer Fund Needed $0.00
Computer Fund $0.00

We are looking for a new sponsor
for the ExpNews, Can you help?

